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1 Code description

Numerical simulations were performed with a discontinuous Galerkin code writ-
ten in Fortran 90 which is currently under development. The code can solve
Euler equations, Navier-Stokes equations or RANS equations with different tur-
bulence models (Spalart-Allmaras, Wilcox k-omega, k-omega+Laminar Kinetic
Energy) in 2D.
Several approximate Riemann problem solvers and numerical fluxes (Osher,
Roe, AUSM+, Rotated-RHLL, Lax-Friedrichs) are available for the computa-
tion of convective fluxes. In particular in this test case the AUSM+ flux [5] is
used.
Diffusive fluxes are computed by means of a recovery based approach [1]. The
implemented method is inspired to the original recovery approach proposed by
Nomura and van Leer [6] but it makes use of a different recovery basis and a
different boundary procedure.
The numerical solution inside the element is represented through an orthonormal
modal basis obtained by the modified Gram-Schmidt procedure. Both physical
space defined and element space defined basis functions can be chosen. In the
first case a set of monomials defined in the physical space is used to start the
orthonormalization procedure, following the approach of [2]. In the second case,
the orthonormalization is initialized with a tensor product of Legendre polyno-
mials defined on the reference element. In this test case the second approach is
used.
Curvilinear elements are implemented up to fourth order for quadrilateral and
third order for triangles.
Both explicit (RK-TVD and SSP-RK) and implicit (backward Euler) time inte-
gration schemes have been implemented. For this steady test case the implicit
backward Euler method is used. The jacobian is evaluated numerically. The
implementation of an analytically evaluated jacobian is under development.
As far as parallelization is concerned, the explicit version of the code is fully
parallelized through OpenMP directives. In the implicit version of the code,
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the computation of fluxes and the linear solver are parallelized by OpenMP. In
particular, the GMRES method with ILU(0) preconditioner from the library
PARALUTION [4] is used. The numerical evaluation of the jacobian is per-
formed in serial.
As far as postprocessing is concerned, the code can generate output files in
which each mesh element is subdivided in several elements depending on the
number of degrees of freedom of the reconstruction. This makes it possible to
obtain a visualization which takes into account all the information related to
the high order reconstruction.

2 Case summary

As far as boundary conditions are concerned total pressure and total tempera-
ture are imposed at the left inflow boundary and static pressure is imposed at
the upper and exit boundaries. All simulations are stopped when L2R/L2R0

drops down 10−10 and the difference between the cd evaluated at two consec-
utive steps is less than 10−11. Here L2R and L2R0 are the L2-norm of the
x-momentum residual at the current iteration and at the first time step. The
residual refers to the zero order modal coefficient. The pseudo-transient contin-
uation technique is used and a CFL number evolution strategy is implemented
according to [3]. The minimum CFL number is 104 and the maximum CFL
number is 1010. The GMRES iterative solver (with ILU0 preconditioner) is
stopped when the relative error reaches 10−2 or when the number of iterations
exceeds 250.

A Linux machine with an Intel i7-3930x processor and 32 Gigabytes of RAM
is used. The machine produces a Taubench time of 6.5 seconds. All simulations
are performed in serial. In Table 1 the work units required to perform 100
residual evaluations with 250000 DOFs are reported. The data refer to a Navier-
Stokes discretization. The results for the implicit integration are dominated by
the cost of the numerical evaluation of the jacobian.

p Explicit Implicit
1 8.6 124.4
2 13.6 575.6
3 25.1 1815.5

Table 1: Work Units for 100 residual evaluations in a viscous problem with
250000 DOFs
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3 Meshes

The provided quadrilateral meshes (flatplate_quad_refx.msh) were used for
the simulations.

4 Results

In Figure 1 and 2 the drag coefficient error is reported as a function of the
equivalent length scale and the work units. The reference drag coefficient value
used for the error computation is Cd = 0.0013111835 ± 10−10.

Figure 1: Cd error vs length scale
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Figure 2: Cd error vs work units
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